Caithness Map :: Links to Site Map Great value Unlimited Broadband from an award winning provider  


Whisky Gets Into The Spirit Of Building Back Greener

8th January 2021

£10 million fund to help UK's world-famous distilleries go green by switching to low carbon fuels such as hydrogen.

UK distilleries raise a toast to government's green industrial revolution in first phase of funding to cut carbon emissions and support new green jobs.

£10 million fund to help UK's world-famous distilleries go green by switching to low carbon fuels such as hydrogen.

funding to enable distilleries to cut emissions by almost a million tonnes of CO2 every year - equivalent to taking 200,000 cars off the road.

Whisky and spirit lovers are raising a glass to the delivery of new government funding that will ensure they can enjoy their favourite tipple without it costing the earth.

Producers in one of the UK’s most iconic industries will be playing their part in reducing carbon emissions, with 17 distilleries today receiving the first phase of £10 million government funding to go green.

Eleven distilleries across Scotland and a further 6 in England will be able to kick-start green innovations thanks to the government backing, helping them harness energy sources such as low-carbon hydrogen, biomass and repurposed waste to power their operations.

The successful distilleries will receive between £44,000 and £75,000 in the first phase of funding, helping them boost decarbonisation research and development, with schemes including the use of hydrogen and biofuel boilers and geothermal energy in their production processes.

The funding will help prevent pollution equivalent to taking 200,000 cars off the road.

Energy and Clean Growth Minister, Kwasi Kwarteng, said:Building back greener from the pandemic is something we can all raise a toast to.

Every business can play a part in the green industrial revolution and this funding will allow UK distilleries to lead the way by making their production cleaner while also creating jobs.

In 2019, the UK distilleries industry grew by 20%, highlighting the opportunity for the sector to be at the heart of the UK’s green and resilient recovery from coronavirus.

The Scotch whisky industry supports 40,000 jobs across the UK, with more than 10,000 people directly employed in Scotland.

With 7,000 of these jobs in rural Scottish areas, today’s funding will drive forward support for net-zero innovation in some geographically remote parts of the UK, creating more jobs and skills and providing opportunities for distilleries to develop their fuel transportation and storage technologies.

The announcement is another example of government commitment to build back greener and work towards the UK’s goal of reaching net zero by 2050 and comes in addition to the ambitious green targets announced in the Ten Point Plan and Energy White Paper.

UK government Scotland Minister, Iain Stewart said:It is fantastic to see so many Scottish distilleries awarded this UK government funding. Scotland is world famous for its whisky and gin, with the spirits industry one of our greatest success stories.

This new funding will help the industry continue to build on its great work in tackling climate change.

From Aberdeen and Glasgow to Orkney and South Uist, this funding will help create jobs, support local businesses and communities and build back greener ahead of COP26 in Glasgow later this year.

Dagmar Droogsma, Director of Industry at the Scotch Whisky Association, said:The Green Distilleries Fund is an important step on the industry’s journey towards net-zero. It will help the industry test new technologies, like hydrogen, which can be rolled out at scale in future years and enable Scotch Whisky to further drive down emissions and protect the natural environment.

With COP26 taking place in Glasgow this year, the Scotch whisky industry has ambitious plans to build on the success of the last decade when distilleries cut greenhouse gas emissions by 34%. There is more to do, but with continued support from government the Scotch whisky industry can continue to work towards a more sustainable future.


1. Highland Park GreenStills Demonstrator

Led by Edrington alongside consultants Allen Associates.

High Temperature Heat Pumps (HTHP) have the potential to convert low-grade heat into steam for use in a variety of distillery applications. They have the benefit of improving overall energy efficiency as well as enabling fuel switching to renewable electricity from fossil fuels. Edrington aim to investigate this technology on an industrial scale, at Highland Park distillery and maltings in Kirkwall. The project will develop an innovative stillhouse heat recovery system with a HTHP at its core. The steam produced will be used to heat the malt drying kilns, replacing coke as the fuel source for this process and eliminating the associated carbon emissions.

2. Decarbonising the InchDairnie Distillery

Led by John Fergus & Co Ltd alongside Arup.

This project will specifically focus on the potential to use hydrogen at the distillery to significantly decarbonise the process heat required. The hydrogen could be produced two ways, by converting the gas generated at the local AD plant to hydrogen onsite and through electrolysis of local renewables onsite. Alternatively, it could be delivered to site from other local larger scale producers in the locality.

The distillery has already carried out a study looking at the energy that could be generated from the warehouse roof PV panels, this data will be brought into the study to determine the hydrogen production capacity. The study will also look at the implications of this additional renewable generation on the electrical system supplying the distillery. The use of the hydrogen within the existing but converted natural gas steam boiler or a newly installed hydrogen system displacing the sites remaining natural gas demand.

Additionally, the carbon footprint of the distillery has been the subject of a previous study. This will help to confirm the potential carbon savings of such a scheme.

3. Using hydrogen to heat thermal oil to replace steam in the distillation process

The Uist Distilling Company Ltd.

The distillation process for most operational distilleries is fuelled by the raising of steam through burning of fuel oil or natural gas. This project will consider the opportunity for a new distillery to be designed as low carbon from the outset by running the distillery through a combination of a hydrogen burner and indirect heating of a thermal oil rather than conventional steam.

This innovative engineering design utilises indirect burning of hydrogen to create a safer operational environment and a cheaper solution than direct combustion. The project seeks to assess the feasibility of creating hydrogen onsite through installation of renewable energy generation and viable routes to market for excess hydrogen created. The production of hydrogen offsite using operational renewable energy assets and transport to site will also be investigated. The techno-economic feasibility of such energy systems will be assessed and discussed in the context of national and regional energy strategy and transition towards a hydrogen economy.

4. Using a high temperature heat store to overcome highly constrained grid infrastructure

The Uist Distilling Company Ltd.

This project considers the opportunity for a new build distillery to be run via an electrically driven high temperature heat store as opposed to the counterfactual case of fossil fuel based oil burners. A significant proportion of existing and new distilleries are situated in rural areas where the electrical infrastructure is highly constrained. This limits the possibilities for new renewable electricity generation as export to the grid is not possible.

The insulted high temperature heat store will use electricity to raise the internal temperature of the storage medium which can then be transferred into process heat. This process heat can be dispatched rapidly (sub one second) allowing energy to be used flexibly and as efficiently as possible. This innovative fuel switching design allows for further integration with renewable sources of electricity and relieves local grid constraints by having a flexible and dispatchable load. The result is a zero or low carbon distillery with lower energy demands and higher resource efficiency that can be replicated across the distillation industry and applied in other industrial commercial settings with high thermal energy use.

5. Decarbonising the distillation process via direct fuel switching from fossil fuels to hydrogen

Locogen Ltd.

This project will assess the feasibility of switching an operational distillery from fuel oil to hydrogen burners that provide direct process heat for distillation. Direct combustion of the hydrogen in burners would involve the retrofit of the fuel distribution and boiler systems within the distillery, whilst the option of creating hydrogen offsite and transporting onsite will also be investigated.

This innovative fuel switching project allows for integration with onsite or offsite renewable energy sources which can create hydrogen through electrolysis. The techno-economic feasibility of such energy systems will be assessed and discussed in the context of national and regional energy strategies and the transition towards a hydrogen economy. The project will realise a zero or low carbon distillery, converted from fossil fuel dependence, which can be replicated across the distillation industry and applied in other industrial commercial settings with high thermal energy use. The project will highlight the opportunities for the acceleration of the hydrogen economy.

6. Large Scale Phase Change Material Thermal Storage

Led by Sunamp with support from Heriot Watt University.

Sunamp will demonstrate through the Green Distilleries feasibility study how PCM thermal storage offer distilleries, both old and new, a safe and resilient pathway of fuel switching to zero and low carbon renewable technology as their main method of heat generation. Using energy and process modelling from Heriot Watt, with data from their on-campus distillery as well as industry input, we will show how a large-scale (MWh) PCM thermal store can be used to convert, capture and store renewable energy generation to be used at the point of demand, in effect decoupling generation from demand.

7. Use of Liquid Organic Hydrogen Carrier (LOHC) for Decarbonizing the UK Distillery Industry

Environmental Resources Management Limited.

Hydrogen has the potential to decarbonise heat in UK distilleries. However, transporting hydrogen to distilleries, often in remote locations, can be a challenge. A potential solution is to transport and store the hydrogen using a liquid organic hydrogen carrier (LOHC). LOHC can carry a similar level of hydrogen per unit volume as liquid hydrogen and can do so safely and cleanly at atmospheric temperature and pressure. It can be transported using conventional road tankers and stored in existing fuel storage tanks.

The objective of the project will be to determine the viability of using LOHC for decarbonising the distillery industry and outline a plan to demonstrate its technical performance, environmental, health and safety credentials and lifecycle cost.

8. WhiskHy

Supercritical Solutions Ltd.

Supercritical’s electrolysis system will produce hydrogen on site at unparalleled efficiency and minimal cost with renewable power supported by waste heat from our partner distillery. The green hydrogen will be looped back into the distillery’s heat or power system to minimise its reliance on fossil fuels, demonstrating a route to a zero carbon distillery reliant only on its local natural resources. The demonstration will be the first of its kind, paving the way for distilleries and other industries across the UK to benefit.

9. Geothermal Distillery and Tropical Cask Maturation Facility

Led by the Cornish Geothermal Distillery Company (CGDC) alongside industrial partners Geothermal Engineering Limited (GEL), Buro Happold and Forsyths.

This ground breaking project aims to demonstrate a cost effective high-temperature heat pump solution, capable of powering heat intensive distillery processes (from fermentation to distillation to maturation) utilising low grade waste industrial heat sources. The initial focus of the study will look at waste heat taken from the UK’s first geothermal power plant at the United Downs Deep Geothermal Project where 80 degree heat is available as a by-product of the electricity production process. This heat stream will be elevated through a heat pump system to produce steam for the distillery, providing a stable, consistent and sustainable energy supply with zero carbon emissions and significant energy savings.

10. Super-Green, High Temperature Heat Pump For Distillery Electrification

Vytok Ltd

Quote from Vytok Ltd:

We are developing a first-of-kind, super-green heat pump to allow distilleries to switch from fossil fuels to electricity and decarbonise the distilling process. The most impactful innovation is the use of pure water as the working fluid in the heat pump. This is the end of a long road from the banning in heat pumps of chlorofluorocarbons (CFCs) in the 1980s due to their ozone-depleting properties.

We now have the opportunity to transform process heating using refrigerants that have zero cost, zero global warming potential (GWP), zero toxicity and full recyclability.

We are working with a gin and whiskey distillery to develop and test the system. They have been carefully selected as being representative of the market and will make an ideal reference site.

Currently they use natural gas to provide the energy for the alcohol distilling process and the waste heat is lost in cooling air and cooling water to the environment. With a heat pump, much of this heat can be returned to the boiler to offset the energy input and make it easier to power the distilling process with renewable energy.

11. HySpirits 2

Led by the European Marine Energy Centre alongside research partner Napier University and industrial partners Edrington, and Orkney Distilling Limited.

HySpirits 2 will deliver the world’s first hydrogen fuelled distillery; demonstrating that fuel switching to clean green solutions can be achieved anywhere. The first stage of the project will assess four different technology pathways to facilitate green hydrogen fuel-switching in the distilling sector enabling full decarbonisation of this industrial process. To achieve this, EMEC will use its world-leading expertise in applied R&D on green hydrogen production using wind and tidal energy in Orkney. Edinburgh Napier University’s industrial decarbonisation team will provide 20 years of experience from the distilling sector. Finally, the global distilling group Edrington (owners of Highland Park Distillery in Orkney) and Orkney Distilling (a boutique, Orkney-owned distilling company) will provide end user inputs, support a market roll-out strategy, and help scope a pilot demonstration.

12. Hy/BioDDP: Hydrogen/Biofuel burners for Distillery Decarbonised Power

Colorado Construction & Engineering Ltd.

Dual fuel hydrogen/NG burners will be developed that can be co-fired with biofuels. This enables an immediate start to be made on the decarbonisation of distilleries using green liquid biofuels co-fuelled with NG, with a direct transition to green/blue hydrogen as it becomes available. Tri-fuel operation on hydrogen, NG and biofuels will be possible in the transition to 100% hydrogen fuel with 100% decarbonisation. NG/hydrogen dual fuel burners with axially staged biofuel injection will be used to utilise difficult to burn waste biofuels such as Pot Ale Syrup and Glycerine. Both steam heated and direct fired distilleries will be part of the programme.

13. BatGasDW: Batch Gasification of Distillery Waste Biomass for renewable distillery fuel

Led by Colorado Construction & Engineering Ltd, a distillery design and installation company, burner manufacturer CBS Ltd, and research partner University of Leeds.

Waste distillery biomass, DRAFF and PAS, as well as other waste biomass will be batch gasified in a novel medium temperature gasifier that avoids tar formation. The hot gasifier gas will be transferred to a newly developed burner for heating of both steam and direct fired distilleries. Optimisation of the gasifier performance will use CO and gas temperature peak seeking control. The gasifier burner will initially be NG fired but a biofuel/NG/hydrogen combined burner will be developed to increase the decarbonisation efficiency towards the 100% that will be possible once green/blue hydrogen is available.

14. The Bennamann-Atlantic Fugitive Methane Green Distillery Solution

Bennamann ltd.

The Bennamann-Atlantic fugitive methane project will combine the expertise and experience of two pioneering Cornish companies to provide an innovative industry-wide fuel-switching solution with substantial carbon saving potential. The solution will be easily reproduced and scalable, promote local energy networks and support mutually beneficial cross-industry interaction.

The feasibility study will investigate the benefits of switching fuel to carbon negative fugitive methane captured from covered slurry-lagoon anaerobic digestors, by enhancing methane yield from the latter using leachate from brewery and distillery organic waste. This novel approach will create a closed-energy loop between energy provider and user, and maximise the carbon savings from switching fuels.

15. Two Stage Distillation via Renewably Powered Heat Pump & Hydrogen

St Andrews Brewers Limited.

Malt Whisky production is an energy intensive process, with distillation accounting for most of the heat demand within the distillery. At Eden Mill Distillery, distillation accounts for approximately 70% of the heat demand.

Eden Mill distillery are in the process of relocating their distillery to the Eden Campus within St. Andrews University. In the building with which they share a common internal wall, there is a biomass fired energy centre which provides district heating to the main St Andrews University campus and Eden Campus. This presents a large source of hot water which can be used use by the distillery.

The hot water produced can be used directly for mashing and cleaning within the distillery. The distillation requires a higher temperature, and this is to be obtained using a heat pump to create hot water thought to be capable of powering the majority of the distillation process in conjunction with steam via a two stage external heat exchanger.

Green Hydrogen created using renewable electricity produced on site is to be used to create the steam required for the second stage of the heat exchangers.

16. Project HyLaddie

Protium Green Solutions Limited.

The HyLaddie project sees Bruichladdich Distillery, Protium Green Solutions, and ITPEnergised come together to assess a pioneering heating technology to help Bruichladdich’s Distillery meet its 2025 net zero emissions target. The project will assess the feasibility of deploying a hydrogen steam boiler system under commercialisation by Protium’s affiliate business Deuterium. The system is a Dynamic Combustion Chamber (DCCTM), which the consortium will seek to deploy at the Bruichladdich distillery with the objective of providing an alternative to the existing medium fuel oil boilers currently in use.

The DCCTM is an innovative condensing oxy-combustion boiler that combusts hydrogen to generate industrial grade steam; relying on green hydrogen as the feedstock the burner emits no green house gases or pollutants and operates without a flue. The completion of the Green distilleries phase 1 competition run by the Small Business Research Initiative (SBRI) will deliver a viable pathway to Bruichladdich’s 2025 net zero target.

17. Orkney Highland Park Energy System

A consortium of Highland Park Distillery, SSE Utility Solutions , Lumenion GmbH, Adrian Wilson (Independent Consultant) led by Protium Energy Ltd.

A consortium of Highland Park Distillery, SSE Utility Solutions , Lumenion GmbH, Adrian Wilson (Independent Consultant) and Protium Energy Ltd has been formed to remove the kerosene fuels currently burnt at the Orkney based distillery to raise steam for the distillation process. The aim is to replace this CO2-emmitting process with a direct and highly efficient transformation of renewable energy into high temperature CO2-free process heat.

The study will investigate the option of a high temperature heat store which takes electricity (when available) and stores it as heat, and then converts that heat to steam (on demand). Orkney is uniquely blessed in the UK with 120% of current electrical demand met by renewable energy sources however it also has electrical grid constraints, requiring significant levels of generation curtailment. The islands have an Active Network Management system, which is trying to get more renewable generation connected by introducing controlled loads such as EVs. It is highly likely that the addition of a multi-megawatt dispatchable load would enhance the system and facilitate even more renewable energy on the archipelago, while tapping into low priced but otherwise curtailed electricity production